PEGylated nanomaterials

Reference number 6971

Sectors: Chemicals

Industries: Advanced Polymers

PEG functionalised graphene is a novel nucleant specifically designed for automated and high throughput crystallisation experiments.

Proposed use

The graphene functionalised PEG nucleant produces high quality crystals for a wide range  of proteins and other biomolecules. The nucleant can crystallise proteins at low concentrations, thus making it invaluable for target proteins that are available in limited supply, as is common  due to the difficulties of isolation. Thus, it finds  application in a wide range of industrial sectors. In the pharmaceutical industry, it facilitates economic and faster discovery and design of active  compounds that target wide range of diseases. The nucleant also plays an important role in the  manufacture of speciality chemicals such as  agrochemicals, pigments, catalysts, dyes, zeolites  and food products. Its application also extends to mineral processing, waste treatment, construction  materials, energy storage and electronic chemicals.

Problem addressed

Crystallisation is crucial for the structure determination of proteins and other biomolecules that have important applications in various sectors of biological sciences, including, agrochemicals, biorefinery, food technology and drug discovery. One of  the major challenges posed by existing nucleants is that their functions are limited by narrow applicability  or difficult implementation.

Technology overview

Researchers at Imperial College London have developed a  novel nucleant that enhances crystallisation: The polymeric component (methoxy polyethylene glycol) is covalently linked to the carbon material and aids the dispersion of the nucleant  and the confinement of the protein at the  surface. The graphene functionalised methoxy poly  ethylene glycol (mPEG) can be readily dispersed  and used to crystallise proteins at low  concentrations of protein. The functionalised carbon nanomaterial (CNM) (graphene) acts as a nucleant for the crystallisation of proteins. The nucleant can be used to crystallise a broad range of  biomolecules of varying molecular weights.


  • Enable the formation of high quality crystals for a wide range of biomolecules
  • Nucleate crystallisation from lower concentrations of biomolecules
  • Accelerate screening and optimisation, through integration with automated, high throughput processes



Portrait of Professor Milo Shaffer
Professor Milo Shaffer

Professor of Materials Chemistry
Faculty of Natural Sciences, Department of Chemistry

Visit personal site
Portrait of Professor Naomi Chayen
Professor Naomi Chayen

Prof Res Fellow - Professor of Biomedical Sciences
Faculty of Medicine, Department of Metabolism, Digestion and Reproduction

Visit personal site

Contact us about this technology


Luis Gomez Sarosi

Industry Partnerships and Commercialisation Officer, Natural Sciences

Dr Luis Gomez Sarosi is Industry Partnerships and Commercialisation Officer for the Faculty of Natural Sciences at Imperial College London.

Contact Luis

Related technologies

Bio-Surfactant: a novel biobased surfactant

Bio-Surfactant: a novel biobased surfactant

A surfactant produced from biobased chemicals that can replace petroleum-derived detergents, exhibiting higher performances in cleaning and resistance to hard water. Find out more

Catalytic materials for wastewater treatment

Catalytic materials for wastewater treatment

The invention A functional catalytic material that selectively oxidises organic molecules utilising molecular oxygen from the air is ... Find out more

Damage-resistant Fibre Reinforced Plastic (FRP) with tailorable Herringbone microstructures

Damage-resistant Fibre Reinforced Plastic (FRP) with tailorable Herringbone microstructures

A novel technique to manufacture Fibre Reinforced Plastic (FRP) with improved damage tolerance Find out more

Sign up for updates

Sign up for monthly technology alerts via email, and find other ways to connect with us.